Схемы подключения люминесцентной лампы с помощью электронного балласта и пускорегулирующего устройства

Схема подключения люминесцентных ламп

  1. Схема подключения люминесцентных ламп
  2. Видео подключения люминесцентных ламп

Наиболее распространённым источником освещения, применяемым в офисных, производственных и общественных зданиях, являются люминесцентные светильники. В последнее время, в связи с экономией энергоресурсов, их, также, начали часто применять и в домашнем быту.

Стандартные светильники, кроме своих достоинств, таких как малое энергопотребление, простота монтажа, низкая стоимость, имеют и ряд конструктивных недостатков. Часть из них выплывает из достоинств: применяя дешёвые, устаревшие, схемы и материалы, производитель уменьшает стоимость светильника, при этом заранее ухудшает потребительские качества.

Подключение одной или двух люминесцентных ламп заводского производства, можно изучить, разобрав обычный светильник. Обычная стандартная, широко применяющаяся схема подключения люминесцентных ламп, включает в себя стартер, дроссель, соединительные провода, конденсатор, и сами лампы. В данном случае, используется так называемая электромагнитная управляющая система.

Улучшить самостоятельно степень освещённости, убрать надоедливое гудение и моргание вполне реально. Для этого, необходимо заменить устаревшую систему управления на современную электронную — (ЭПРА).

Для начала, нужно демонтировать светильник, вынуть из него всю начинку. Приобретя новый электронный блок, исходя из параметров вашего светильника, можно будет выполнить подключение люминесцентных ламп без дросселя и стартера. Для такой работы, вам понадобятся отвёртки с разными жалами, кусачки для зачистки проводов, шуруповёрт для крепления блоков управления, изолента, отвёртка-тестер.

Подключение ЭПРА для люминесцентных ламп легко выполнить, имея минимальные познания в электрических схемах, и навыки работы с электропроводкой. Фактически, в светильнике останется сам блок, комплект проводов и лампы дневного света.

Перед началом работ, нужно выбрать в корпусе светильника достаточное место для установки электронного блока управления, руководствуясь удобством подключения к клеммам, находящимся на его корпусе. Крепим блок к корпусу при помощи саморезов обычным шуруповёртом. Соединяем аппаратуру управления с лампой и клеммой подключения.

Схема подключения 2-х люминесцентных ламп аналогична, просто они подключаются последовательно, и, исходя из этого, мощность электронного блока должна быть в два раза больше мощности ламп. Тот же принцип, при подключении трёх и более ламп, в одном корпусе.

После сборки всей конструкции, нужно убедиться в правильности подключения всех проводников, после чего можно устанавливать светильник на место. Проверив тестером отсутствие напряжения в сети, подключаем светильник к электропроводке, соединяя провода через специальный клеммник.

Последний аккорд, это включение напряжения для удостоверения правильности работы светильника.

Если схема, к примеру, подключения двух люминесцентных ламп, была выполнена правильно, то сам процесс работы будет разительно отличатся от первоначального.

Во-первых, лампы зажгутся моментально, без так называемого разогрева, во-вторых исчезнет низкочастотное гудение, свет перестанет пульсировать, заметно для человеческого глаза, а общая светимость увеличится.

Настоятельно рекомендуем вызвать электриков-профессионалов, если вы не уверены в своих силах! Ведь работа с электрикой опасна для здоровья и жизни!

Видео подключения люминесцентных ламп

Монтаж люминесцентной лампы

Более подробно об устройстве люминесцентных ламп:

Как подключить люминесцентную лампу

Источник: https://mainavi.ru/kvartira/elektrika/sxema-podklyucheniya-lyuminescentnyx-lamp/

Как подключить люминесцентную лампу с традиционным электромагнитным дросселем, с электронным дросселем, с перегоревшими нитями разогрева, а также полезные советы для увеличения срока эксплуатации ламп

Схема подключения люминесцентных ламп — это графическое изображение соединения различных деталей, совместная работа которых обеспечивает излучение света осветительным прибором.

Правильно выполненное подключение обеспечит максимально возможное время эксплуатации ламп, снизит создающее некомфортность гудение электромагнитного балласта, но и обеспечит существенную экономию электроэнергии по сравнению с лампами накаливания – более пятнадцати процентов. Люминесцентные  лампы при работе излучают намного меньшее количество тепла, чем традиционные лампы накаливания. Это дает возможным применять для дизайнерского оформления светильников даже те материалы, которые представляют опасность с позиций легкой возгораемости.

Подключить люминесцентную лампу намного сложнее, чем обычную лампу накаливания. Это вызвано характером получения видимого света, используемого для освещения.

Как происходит процесс включения лампы дневного света

Люминесцентная лампа — это своеобразный трансформатор, преобразующий частоты света – недоступного зрению ультрафиолетового излучения в видимый свет, излучаемый атомами вещества, из которого изготавливается слой внутреннего покрытия лампы.

Как происходит включение люминесцентной лампы

Конструкционно люминесцентная лампа выполнена как герметичнаф стеклянная колба, внутрь которой закачена специальная смесь газов. Состав смеси подбирается так, чтобы потребность в электроэнергии для процесса ионизации атомов газовой смеси требовалось значительно меньше, чем для обеспечения работы лампы накаливания такой же мощности.

Для того, чтобы люминесцентная лампа служила постоянным источником света необходимо постоянная ионизация. Для этого в системе постоянно поддерживается тлеющий разряд с помощью непрерывной подачи необходимого напряжения на ламповые электроды.

Отличается от ламп накаливания и процесс, в результате которого начинают светиться люминесцентные лампы. Чтобы начался процесс ионизации требуется высоковольтный разряд, который происходит после прогрева смеси газов вокруг электродов.

Чтобы обеспечить протекание этого процесса в лампе имеются две тонкие спирали подогрева. При подаче на спирали электрического тока они разогреваются и этот разогрев делает более легким выход анионов – отрицательно заряженных частиц.

Напряжение в сети, то есть 220 вольт, поданное непосредственно на спирали, вызовет их перегорание, поэтому используют схемы запуска через индуктивный дроссель.

В этом элементе при подаче переменного напряжения начинают возникать электромагнитные процессы, ограничивающие силу тока, который протекает по цепи, в результате чего достигается ограничение сетевого напряжения. Для протекания этого процесса на электроды подается высоковольтный импульс.

Индуктивный дроссель также служит генератором импульса высоковольтного напряжения благодаря которому  осуществляется пробой газовой смеси в внутреннем пространстве люминесцентной лампы.

Высокая электродвижущая сила возникает в результате внутренней самоиндукции дросселя. Для получения импульса требуется включение в схему элемента, который обеспечит в цепи кратковременное прерывание.

Такую функцию выполняет электрический стартер.

Таким образом в целом схематически протекание электрического тока в включаемой люминесцентной лампе можно представить следующим образом:

  • сетевое напряжение подается на индуктивный дроссель;
  • пройдя через индуктивный дроссель ток подается на первую разогревающую спираль лампы;
  • пройдя первую разогревающую спираль ток идет на стартер – его контакты разогреваясь замыкаются и ток разогревает спирали нагрева до 900˚С, a затем размыкаются вызывая высоковольтный импульс дросселя;
  • импульс подается на ламповые электроды и вызывает пробой и инициирование работы лампы.

Чтобы обеспечить такое прохождения тока создаются различные схемы для подключения люминесцентных ламп.

Классическая схема c использованием электромагнитного балласта

Совокупность дросселя и стартера также называют электромагнитным балластом. Схематически такой вид подключения можно представить в виде нижерасположенного рисунка.

Для увеличения коэффициента полезного действия,a также уменьшения реактивных нагрузок в схему вводятся два конденсатора – они обозначены С1 и С2.

  • Обозначение LL1- дроссель, иногда его называют балластником.
  • Обозначение Е1 – стартер, как правило он представляет собой небольшую лампочку тлеющего разряда c одним подвижным биметаллическим электродом.

Изначально, до подачи тока эти контакты разомкнуты, поэтому ток в схеме напрямую на лампочку не подается, а нагревает биметаллическую пластину, которая нагреваясь выгибается и замыкает контакт.

В результате возрастает ток, нагревающий нити нагрева в люминесцентной лампе, а самом стартере ток уменьшается и электроды размыкаются.

В балласте начинается процесс самоиндукции, приводящий к созданию высокого импульса напряжения, обеспечивающего образование заряженных частиц, которые взаимодействуя с люминофором покрытия, обеспечивают возникновение светового излучения.

Такие схемы с использованием балласта имеют ряд достоинств:

  • небольшая стоимость требуемого оборудования;
  • простота в использовании.

К недостаткам таких схем можно отнести:

  • «мерцающий» характер светового излучения;
  • значительный вес и крупные габариты дросселя;
  • долгое зажигание люминесцентной лампы;
  • гудение работающего дросселя;
  • почти 15% потерь энергии.
  • невозможно использовать совместно с устройствами, которые плавно регулируют яркость освещения;
  • на холоде включение значительно замедляется.

Дроссель выбирают строго в соответствии c инструкцией к конкретному виду люминесцентных ламп. Это обеспечит полноценное выполнение им своих функций:

  • ограничивать в требуемых значениях величину тока при замыкании электродов;
  • генерировать достаточное для пробоя газовой среды в колбе лампы напряжение;
  • обеспечивать поддержку горения разряда на стабильном постоянном уровне.

Несоответствие выбора приведет к преждевременному износу ламп. Как правило, дроссели имеют ту же мощность, что и лампа.

Среди наиболее распространенных неисправностей светильников, в которых используют люминесцентные лампы, можно выделить такие:

  • отказ дроселля, внешне это появляется в почернении обмотки, в оплавлении контактов: проверить его работоспособность можно самостоятельно, для этого понадобится омметр – сопротивление исправного балласта составляет порядка сорока Ом, если омметр показывает менее тридцати Ом – дроссель подлежит замене;
  • отказ стартера – в этом случае лампа начинает светиться только по краям, начинается мигание, иногда лампочка стартера светится, нол сам светильник не зажигается, устранить неисправность можно только заменой стартера;
  • иногда все детали схемы исправны, но светильник не включается, как правило, причиной является потеря контактов в ламподержателях: в некачественных светильниках они изготавливаются из некачественных материалов и поэтому плавятся – устранить такую неисправность можно только заменой гнезд ламподержателей;
  • лампа мигает по типу стробоскопа, по краям колбы наблюдается почернение, свечение очень слабое – устранение неисправности замена лампы.
Читайте также:  Какие стабилизаторы напряжения лучше применять для частного дома, отзывы потребителей

Схема для подключения нескольких ламп

Преимущественно во всех светильниках используют не одну люминесцентную лампу, а несколько, минимум две. B этом случае элементы соединяют в схеме последовательно: А между проводами фазы и ноля устанавливается конденсатор. Их включают в схемы для предотвращения помех в общей электросети, а также для компенсирования возникающей реактивной мощности.

Недостаток такой схемы – параллельность подключения. Если испортится один элемент схемы – все остальные также не будут работать.

Использование электронного балласта для подключении люминесцентных ламп

На сегодняшний день подобные схемы подключения светильников c лампами дневного света наиболее распространены. Они лишены тех недостатков, которые присущи работе светильников c применением электромагнитного балласта. Среди преимуществ – такие схемы не требует наличия стартера.

Современные электронные балласты дают возможность экономить электроэнергию, увеличить срок работы светильников. При этом свет при таких схемах подключения в отличие от схем с использованием дросселей, не мигающий эффект стробоскопа отсутствует. Это достигается благодаря тому, что рабочее напряжение для ламп имеет частоту, отличную от частоты в сетях – до 133 kGz.

Применение микросхем позволило значительно снизить вес пусковых устройств, уменьшить их габариты. Это дало возможность непосредственно встраивать балласт непосредственно в цоколь лампы, предложить потребителям люминесцентные лампы, которые можно прямо вкручивать в обычный патрон подобно лампочке накаливания.

Использование микросхем дало возможность обеспечить плавный нагрев электродов в лампах, а это не только повышает эффективность их работы, но и значительно удлиняет время эксплуатации.

Электронный балласт дает возможность применять люминесцентные лампы совместно c устройствами, которые предназначены для плавной регулировки освещенности – диммерам.

К достоинствам светильников, в которых применяется такая схема можно отнести нанесение изображения порядка подключения контактов на устройство, что делает такие приборы очень удобными для пользователей, которые не являются электриками-профессионалами.

Устройство электронного балласта

Как видно из принципиальной схемы, пускатель в виде электронного баласта является своеобразным преобразователем напряжения. Миниатюрный инвертор преобразует постоянный ток в переменный высокой частоты. Этот ток подается на электроды-нагреватели.

Интенсивность нагревания этих электродов повышается. Включение преобразователя сделано так, что на первых этапах частота тока имеет высокую частоту. Сама люминесцентная лампа включена в контур, у которого резонансная частота меньше, чем начальная частота преобразователя.

B дальнейшем частота уменьшается, a напряжение, a напряжение на колебательном контуре и на лампе растет,  в результате чего контур начинает приближаться к резонированию. Одновременно увеличивается степень нагрева электродов.

Это приводит к созданию условий возникновения разряда в газовой смеси и люминофорное покрытие колбы начинает светиться.

Электронный балласт составляется таким образом, чтобы регулирующее устройство могло подстраиваться под те характеристики, которые имеет люминесцентная лампа.

Это дает возможность сохранять изначальные световые характеристики осветительного прибора в течение продолжительного времени. По мере износа люминесцентные лампы требуют все большего напряжения для достижения момента начального разряда.

Электронный балласт самостоятельно подстраивается под произошедшие изменения и качество освещения остается прежним.

По сравнению с дроссельным, электронный балласт имет несколько достоинств:

  • он обеспечивает большую экономичность при эксплуатации;
  • дает возможность создать условия для бережного нагревания электродов;
  • обеспечивает плавное включение лампы;
  • использование электронного баланса дает возможность преодолеть такой недостаток люминесцентного освещения, как мерцание;
  • дает возможность применять люминесцентные лампы в условиях холода;
  • увеличивает временные эксплуатационные характеристики;
  • имеет намного меньший вес и размеры.

К недостаткам электронного балласта можно отнести высокие требования, предъявляемые к качеству комплектующих,a также точности выполнения монтажа, усложненность схемы подключения.

Как подключают люминесцентную лампу, у которой сгорели нити накала

Существуют схемы включения, которые позволяют пользоваться светильником даже в тех случаях, когда лампа не горит при использовании умножительного устройства.

Чтобы вернуть такую лампу к жизни достаточно включить в цепь перед стартером включают конденсатор мощностью в 4 Мкф.

Такое изменение возобновит свечение, но устранить мерцание по краям оно не сможет.

Существуют схемы для включения люминесцентных ламп, у которых вышли из строя нити накала, которые не только восстанавливают осветительный прибор, но и устраняют такой недостаток, как гудение электромагнитного дросселя.

Как включают люминесцентные лампы без стартера и с перегоревшей нитью накала можно узнать из видеоролика

Источник: http://www.ExpertPoRemontu.ru/shema-podklucheniya-luminescentnyh-lamp-444

Устройство и подключение люминесцентных ламп. Устройство люминесцентной лампы и нюансы ее подключения. Что представляют собой люминесцентные лампы. Основные схемы подключения источников света

Производство люминесцентных ламп занимает второе место в мире среди источников искусственного света. Каждый год выпускается более 1 млрд. штук. Огромная популярность данных изделий поясняется низким потреблением электрической энергии и приличным эксплуатационным периодом.

Разновидности устройств

Люминесцентные лампы выпускаются в разнообразных формах. Они подразделяются на:

  • трубчатые;
  • кольцевые;
  • U-образные;
  • ультрафиолетовые;
  • компактные.

Трубчатые лампы имеют форму, схожую с прямой трубкой. Распознать эти изделия довольно легко по трубчатой форме цоколя. Размеры люминесцентных ламп маркируются буквой «Т» и цифрой, которая обозначает диаметр, равный 1/8 части дюйма.

Так, диаметр люминесцентной лампы Т4 будет составлять 13 мм (25,4*4:8). Если необходимо приобрести лампочку диаметром 26 мм, то подойдет изделие с маркировкой Т8.

Кольцевые люминесцентные источники света отличаются цоколем, который состоит из четырех штырей. В зависимости от диаметра колец лампы бывают трех размеров.

U-образные лампы представляют собой устройства, которые обладают небольшой длиной, а цоколи располагаются только с одной стороны.

Ультрафиолетовые изделия являются альтернативным решением лампам накаливания. Основная сфера применения — в биологических и фотохимических облучателях.

Основное отличие компактных люминесцентных ламп — небольшой размер. В некоторых случаях эти источники света при продаже обозначаются буквами «ККЛ». Благодаря минимальной температуре нагрева данный вид ламп применяется в люстрах и светильниках.

Принцип работы люминесцентных ламп

Независимо от различий источников света по внешним параметрам они обладают сходными чертами. В частности, устройство люминесцентной лампы предполагает наличие следующих элементов:

  • электродов;
  • люминесцентного покрытия (люминофора);
  • инертного газа с парами ртути в колбе.

По своей сути люминесцентная лампа является герметичной колбой. Газы в ней подобраны таким образом, что не нужно огромных затрат энергии для поддержания процесса ионизации. Для постоянного свечения лампы необходимо создать тлеющий разряд.

Это делается путем подачи напряжения определенной величины на электроды, располагающиеся с обеих сторон колбы. Каждый электрод «оснащен» двумя контактами, которые соединяются с источником тока. Так происходит обогрев пространства возле электродов.

Фактически схема подключения люминесцентных ламп представляет собой такую последовательность действий:

  • обогрев электродов;
  • подача на них высоковольтного импульса;
  • поддержка оптимального напряжения для тлеющего разряда.

Благодаря тлеющему разряду в колбе, покрытой люминофором, происходит появление невидимого ультрафиолетового свечения. Основное предназначение люминофора — смещение частотного диапазона света в видимый спектр.

Зачастую напряжения, которое имеется в электрической сети, не хватает для нормального функционирования люминесцентных ламп. Данная проблема решается путем использования двух устройств:

  • дросселя (ограничивает силу тока до оптимального показателя);
  • стартера (предотвращает перегорание лампы, регулируя накал электродов).

Существует два основных способа подключения люминесцентных ламп:

  • с помощью электромагнитного балласта;
  • с использованием электронного балласта.

Подключение лампы с электромагнитным балластом

Данная схема подключения включение:

  • дросселя в разрыв цепи питания нитей, которые накаливают люминесцентную лампу;
  • стартера параллельно электродам.

Стартер является неоновым источником света с небольшой мощностью. Данное устройство обладает биметаллическими контактами и имеет подпитку от сети с переменным током. Соединение дросселя, стартерных контактов и нитей накала электродов производится в последовательном порядке.

В качестве альтернативы стартеру можно использовать обычную кнопку от электрического звонка. В этом случае подача напряжения на лампу производится путем нажатия и удерживания кнопки. После зажигания лампы кнопку следует отпустить.

Читайте также:  Соединение алюминиевого и медного провода: как лучше и грамотнее соединять изделия из алюминия и меди

Сам процесс включения лампы с электромагнитным балластом заключается в следующем:

  • при подключении к сети происходит накапливание электромагнитной энергии дросселем;
  • поступление электричества осуществляется с помощью стартерных контактов;
  • ток проходит через нити нагрева электродов, сделанные из вольфрама;
  • электроды и стартер нагреваются;
  • происходит размыкание биметаллических контактов стартера;
  • этот процесс сопровождается выбросом энергии, которая накопилась в дросселе;
  • происходит изменение напряжения на электродах, и лампа зажигается.

Для увеличения КПД и подавления помех, которые возникают при пуске лампы, устанавливаются два конденсатора. Меньший по размерам помещается внутри стартера и предназначен для искрогашения и улучшения пробойного импульса неона.

К преимуществам подключения люминесцентной лампы с помощью электромагнитного балласта относятся:

  • простота устройства;
  • повышенная надежность;
  • небольшая цена.

Недостатки данной технологии:

  • солидный вес;
  • длительный запуск лампы (до 3 секунд);
  • малоэффективная работа при низкой температуре;
  • повышенное потребление электрической энергии;
  • шумное функционирование дросселя;
  • мерцание с частотой 100 Гц, которое опасно для зрения.

Подключение источника света с электронным балластом

Более высокотехнологичным и экономным вариантом является использование пускорегулирующего устройства, которое называется электронным балластом. Благодаря подключению люминесцентных ламп без дросселя и стартера отсутствуют практически все недостатки, присущие устройствам с электромагнитным балластом.

В частности, данный способ подключения люминесцентной лампы характеризуется:

  • отсутствием мерцающего эффекта;
  • низким потреблением электроэнергии;
  • рациональным нагреванием электродов;
  • отличной экономичностью;
  • легким запуском  ламп в помещениях с низкой температурой;
  • автоматической адаптацией пускорегулирующего устройства под параметры источника света;
  • длительным эксплуатационным периодом ламп.

Люминесцентные лампы отличаются небольшим весом. Их можно помещать в стандартный цоколь и вкручивать в обычный патрон.

К недостаткам использования устройств с электронным балластом относятся:

  • сложная схема подключения;
  • серьезные требования к комплектующим изделиям.

Теперь о том, как подключить люминесцентную лампу с электронным балластом. По конструктивным особенностям это устройство является схожим с преобразователем сетевого напряжения. Для получения высокочастотного переменного напряжения используется малогабаритный инвертор.

Минимальное нагревание электродов достигается при наивысшей частоте. Преобразователь начинает работать при максимальной частоте. Включение лампы происходит параллельно колебательному контуру, который обладает более низкой частотой, нежели первоначальный показатель преобразователя.

В процессе запуска лампы происходит снижение частоты и повышение напряжения на колебательном контуре. Это приводит к нагреву электродов и последующему возникновению газового разряда. В результате замыкания колебательного контура лампочка начинает светиться.

Сравнивая два варианта, следует констатировать факт, что лампы с электронными пускорегулирующими устройствами являются более предпочтительным источником световой энергии. Существенная экономия достигается при замене стартера и дросселя электронным балластом. Причем корпус светильника можно оставить тот же.

Удаление дросселя и стартера

Данную процедуру можно совершить и при перегорании лампы. Причинами данного явления могут быть:

  • сгорание колбы;
  • сгорание пускового устройства.

Определить причину можно по внешнему виду люминесцентной лампы. Наличие потемневших концов свидетельствует о том, что произошло сгорание колбы. Если колба не потемнела, то, возможно, произошло перегорание пусковой схемы.

Чтобы выяснить это, лампу необходимо разобрать. Для этого используется нож или отвертка. Данная процедура осуществляется очень аккуратно, поскольку колба может в руках лопнуть. Не нужно прилагать огромных усилий.

Открыв лампу, внимательно рассматривается пусковой механизм. Обычно внутри лампы проходит шесть проводов:

  • два питающих, идущих к схеме от цоколя;
  • четыре, соединяющихся с колбой и расположенных попарно по краям платы.

Отсутствие на схеме копоти и нагара или расплавленных проводов говорит о том, что схема является рабочей. Скорее всего, перегорела колба.

Дальнейшие действия заключаются в следующем:

  • с помощью кусачек изымается схема;
  • на плате должна остаться большая часть проводков;
  • для проверки работоспособности схемы берется работающая лампа, идентичная по мощности;
  • четыре проводка, которые соединялись с колбой, удлиняются, присоединяются к работающей лампе и изолируются;
  • два питающих провода тоже удлиняются и подключаются к сети;
  • если лампа загорелась, то схема является рабочей;
  • удаляем из старой лампы стартер и дроссель;
  • устанавливаем схему на свое место.

Еще одной из неисправностей люминесцентной лампы может быть обрыв вольфрамовой нити. При включенном источнике света нить нагревает газ, а люминофор начинает светиться. С течением времени  вольфрам понемногу испаряется и оседает на стенках светильника.

Целостность вольфрамовой нити проверяется с помощью обычного тестера, которым измеряют сопротивление проводников. Если при соприкосновении с выводными концами люминесцентной лампы шкала прибора показывает сопротивление 9,9 Ом, то это свидетельствует об исправности нити. Если показания прибора равняются нулю, то существует обрыв нити.

Основной причиной обрыва вольфрамовой нити является ее истончение в результате возрастающего напряжения, которое проходит сквозь нее. Увеличение напряжение негативно воздействует и на стартер, из-за чего лампа начинает моргать.

Видео о подключении люминесцентной лампы:

Источник: http://recn.ru/ustrojstvo-i-podklyuchenie-lyuminescentnyh-lamp

Схемы включения люминесцентных ламп с электромагнитными ПРА

Для поддержания и стабилизации процесса разряда поочередно с люминесцентной лампой врубается балластное сопротивление в сети переменного тока в виде дросселя либо дросселя и конденсатора. Эти устройства именуют пускорегулирующими аппаратами (ПРА).

Напряжение сети, при котором работает люминесцентная лампа в установившемся режиме, недостаточно для ее зажигания. Для образования газового разряда, т. е. пробоя газового места, нужно повысить эмиссию электронов методом их подготовительного разогрева либо подачи на электроды импульса завышенного напряжения. То и другое обеспечивается при помощи стартера, включенного параллельно лампе.

Схема включения люминесцентной лампы: а — с индуктивным балластом, б — с индуктивно-емкостным балластом.

Разглядим как происходит процесс зажигания люминесцентной лампы.

Стартер представляет собой маленькую лампочку тлеющего разряда с неоновым заполнением, имеющую два биметаллических электрода, которые в обычном положении разомкнуты.

При подаче напряжения в стартере появляется разряд и биметаллические электроды, изгибаясь, замыкаются накоротко.

После их замыкания ток в цепи стартера и электродов, ограниченный только сопротивлением дросселя, растет до двухтрехкратного значения рабочего тока лампы и происходит резвый разогрев электродов люминесцентной лампы. В это время биметаллические электроды стартера, остужаясь, размыкают его цепь.

В момент разрыва цепи стартером в дросселе появляется импульс завышенного напряжения, вследствие которого происходят разряд в газовой среде люминесцентной лампы и ее зажигание.

После того как лампа зажглась, напряжение на ней составляет около половины сетевого. Такое напряжение будет и на стартере, но этого оказывается недостаточно для его повторного замыкания.

Потому при пылающей лампе стартер разомкнут и в работе схемы не участвует.

Одноламповая стартерная схема включения люминесцентной лампы: Л — люминесцентная лампа, Д — дроссель, Ст — стартер, С1 — С3 — конденсаторы.

Конденсатор, включенный параллельно стартеру, и конденсаторы на входе схемы созданы для понижения уровня радиопомех.

Конденсатор, включенный параллельно стартеру, не считая того, содействует повышению срока службы стартера и оказывает влияние на процесс зажигания лампы, содействуя значительному понижению импульса напряжения в стартере (с 8000 -12 000 В до 600 — 1500 В) при одновременном увеличении энергии импульса (за счет роста его длительности).

Недочетом описанной стартерной схемы является маленький cos фи, не превосходящий 0,5. Увеличение cos фи достигается или включением конденсатора на вводе, или применением индуктивно-емкостной схемы. Но и в данном случае cos фи 0,9 — 0,92 в итоге наличия высших гармонических составляющих в кривой тока, определяемых специфичностью газового разряда и пускорегулирующей аппаратурой.

В двухламповых светильниках компенсация реактивной мощности достигается при включении одной лампы с индуктивным, а другой с индуктивно-емкостным балластом. В данном случае cos фи = 0,95. Не считая того, такая схема ПРА позволяет сгладить в значимой степени пульсации светового потока люминесценых ламп.

Схема включения люминесцентных ламп с ПРА с расщепленной фазой

Наибольшее распространение для включения люминесцентных ламп мощностью 40 и 80 Вт получила у нас двухламповая импульсная схема стартерного зажигания с применением балластных возмещенных устройств 2УБК-40/220 и 2УБК-80/220, работающих по схеме «расщепленной фазы». Они представляют собой комплектные электронные аппараты с дросселями, конденсаторами и разрядными сопротивлениями.

Поочередно с одной из ламп врубается только дроссель-индуктивное сопротивление, что делает отставание тока по фазе от приложенного напряжения.

Поочередно со 2-ой лампой, кроме дросселя, врубается конденсатор, емкостное сопротивление которого больше индуктивного сопротивления дросселя приблизительно в 2 раза, создающий опережение тока, в итоге чего суммарный коэффициент мощности комплекта выходит порядка 0,9 -0,95.

Не считая того, включение поочередно с дросселем одной из 2-ух ламп специально подобранного конденсатора обеспечивает таковой сдвиг фаз меж токами первой и 2-ой ламп, при котором глубина колебаний суммарного светового потока 2-ух ламп будет значительно уменьшена.

Читайте также:  Установка электропроводки в деревянном доме своими руками: схема, проводка, оборудование и электрика

Для роста тока обогрева электродов поочередно с емкостью врубается компенсирующая катушка, которая отключается стартером.

Монтажная схема включения двухлампового стартерного аппарата 2УБК: Л — люминесцентная лампа, Ст- стартер, С — конденсатор, r — разрядное сопротивление. Корпус ПРА 2УБК показан пунктиром.

Бесстартерные схемы включения люминесцентных ламп

Недочеты стартерных схем включения (значимый шум, создаваемый ПРА при работе, возгораемость при аварийных режимах и др.), также низкое качество выпускаемых стартеров привели к напористым поискам бесстартерных экономически целесообразных оптимальных ПРА с тем, чтоб сначала применить их в установках, где довольно ординарны и дешевы.

Для надежной работы бесстартерных схем которых рекомендуется использовать лампы с нанесенной на пробирки токопроводящей полосой.

Наибольшее распространение получили трансформаторные схемы резвого запуска люминесцентных ламп в каких в качестве балластного сопротивления употребляется дроссель, а подготовительный обогрев катодов осуществляется накальным трансформатором или автотрансформатором.

Бесстартерные одноламповая и двухламповая схемы включения люминесцентных ламп: Л — люминесцентная лампа, Д — дроссель, НТ — накальный трансформатор

В текущее время расчетами установлено, что стартерные схемы для внутреннего освещения более экономны, и потому они имеют преимущественное распространение. В стартерных схемах энергопотери составляют приблизительно 20 — 25%, в бесстартерных — 35%

В ближайшее время схемы включения люминесцентных ламп с электрическими ПРА равномерно вытесняются схемами с более многофункциональными и экономными электрическими пускорегулирующими аппаратами (ЭПРА).

Источник: http://elektrica.info/shemy-vklyucheniya-lyuminestsentny-h-lamp-s-e-lektromagnitny-mi-pra/

Выбираем и подключаем дроссель для люминесцентных ламп правильно

Люминесцентная лампа относится к газоразрядным устройствам. Следовательно, в ее конструкции должен присутствовать элемент, ограничивающий ток.

В противном случае сила тока будет нарастать лавинообразно, что несомненно приведет к поломке лампы, а, возможно, и к ее взрыву.

Такой ограничитель разработчиками люминесцентных ламп предусмотрен. Его роль играет электронное или электромагнитное устройство — дроссель (или балласт).

Для чего нужен дроссель

Характеристики энергосберегающей лампы предполагают наличие балласта, поглощающего лишнюю мощность в электроцепи. В лампе мощностью 36-40 Вт дроссель забирает около 6 Вт (15%).

Электромагнитные дроссели для ламп люминесцентного типа

Основные функции дросселя:

  • подогрев катодов для их подготовки к эмиссии электронов;
  • создание напряжения, необходимого для стартового разряда;
  • ограничение тока, протекающего по электрической схеме после старта.

В цепи переменного тока дроссель обеспечивает сдвиг фаз между током и напряжением. Величина отставания тока от напряжения, которую вызывает дроссель, указана в его маркировке (cos ϕ). Данная характеристика имеет еще одно название – коэффициент мощности.

Активная мощность определяется по формуле:

P = U х I х cos ϕ, где

U – напряжение,

I – сила тока.

При низком коэффициенте мощности растет потребление реактивной энергии.

Дроссели классифицируются по уровню мощности и шума.

По уровню мощности дроссели делятся на три класса:

  • С – с низким уровнем;
  • В – с супернизким;
  • D – со средним уровнем поглощения.

Различаются дроссели и по уровню шума:

  • С – очень низкий;
  • А – особо низкий;
  • П – пониженный;
  • Н – нормальный.

Принцип работы

Устройство в лампе работает в паре со стартером:

  • при подаче напряжения на лампу ток попадает на стартер – элемент, состоящий из баллона и конденсатора (в баллоне, заполненном инертным газом, размещены контакты из биметалла);
  • под воздействием напряжения происходит ионизация газа, и ток протекает по цепи дросселя. Газ и контакты разогреваются, что приводит к увеличению силы тока до 0,5 А. Следом разогреваются и катоды и освобождаются электроны. Они, в свою очередь, способствуют разогреву ртутных паров, помещенных в трубку лампы;
  • как только контакты замыкаются, завершается ионизация. Температура стартера падает, контакты размыкаются.

Наглядное представление работы дросселя

Как подобрать

Выбирая дроссель к люминесцентной лампе, в первую очередь обращайте внимание на его мощность: она должна совпадать с мощностью светильника.

Немаловажную роль при выборе играет и производитель: лучше, если это будет известная компания, продукция которой широко применяется. Покупая дешевые изделия неизвестных изготовителей, вы рискуете напрасно выбросить деньги.

Еще один вопрос, требующий решения: какой дроссель вы хотите купить – электронный или электромагнитный. Цены на них заметно отличаются.

Cтоимость электромагнитного дросселя в зависимости от мощности начинается примерно со 150 рублей (импортный вариант), а
минимальная цена на электронный дроссель составляет около 500 рублей.

Классификация приборов

В люминесцентных лампах могут использоваться электромагнитные или электронные дроссели. Каждому из видов присущи определенные достоинства и недостатки.

Электромагнитные

Электромагнитный дроссель представляет собой катушку с металлическим сердечником. Для обмотки используются медный и алюминиевый провода. От их диаметра зависит нормальная работа светильника. Потери мощности устройства составляют от 10 до 50%.

Люминесцентные лампы с электромагнитными дросселями стоят недорого, не требуют дополнительной настройки. Однако электромагнитный дроссель весьма чувствителен к нестабильности электрической сети. Малейшее колебание приводит к мерцанию лампы и повышению уровня шума: светильник начинает гудеть.

Электромагнитные ПРА

Перед зажиганием лампы из-за несинхронности работы дросселя с частотой сети происходят вспышки. Они приводят к ускоренному износу ПРА.

На разогревание электромагнитного дросселя тратится четверть мощности светильника.

Электромагнитные дроссели имеют право на жизнь, они обеспечивают достаточную надежность светильников. Но сейчас их активно вытесняют электронные балласты.

Электронные ПРА

Электронный дроссель имеет более сложную конструкцию. В его состав входят:

  1. Фильтр электромагнитных помех. Гасит электромагнитные импульсы самого светильника и устраняет внешние помехи – от сети.
    выпрямитель: служит для преобразования тока.
  2. Схема коррекции коэффициента мощности. Отвечает за контроль сдвига по фазе переменного тока, который проходит через нагрузку.
  3. Фильтр сглаживающий. Снижает уровень пульсации переменного тока.
  4. Инвертор. Отвечает за преобразование постоянного тока в переменный.
  5. Балласт. Индукционная катушка, участвующая в накоплении энергии, подавлении помех и плавной регулировке яркости свечения.

При включении лампы ток из выпрямителя поступает на буфер конденсатора. Там происходит сглаживание частоты пульсации. Высокое напряжение попадает на инвертор и заряжает микросхемы и конденсаторы.

При достижении напряжения 5,5 В микросхема сбрасывается. Зарядка конденсатора обратной связи (компенсационной) регулируется транзисторами. Как только напряжение достигнет 12 В, система входит в следующую фазу – предварительного нагрева.

ЭПРА Navigator

Поджиг происходит при минимальном значении напряжения 600 В. Этот процесс происходит всего за 1,7 сек.

Схема подключения с люминесцентными лампами 2х18

Схема подключения ПРА с двумя люминесцентными лампами, мощностью 18В

Для подключения двух ламп мощностью 18W требуется индукционный тип устройства мощностью не менее 36 Вт (подойдет ПРА на 40 Вт) и два стартера S2 на 4-22 Вт.

Стартеры подключаются параллельно каждой лампе. В результате будут задействованы по одному контакту-штырю с каждой стороны лампы. Остальные контакты подключаются через индукционный дроссель к питающей электрической сети.

Снизить помехи и компенсировать реактивную мощность можно при помощи конденсатора, подключенного параллельно к питающим контактам осветительного прибора.

Вариантов, подключения ПРА и ЭПРА множество, поэтому далее приведет несколько понятных рисунков-схем с самыми распространенными видами соединений.

Схема последовательного подключения ламп через дроссельПодключение с использованием дополнительной лампы накаливания (без дросселя)Схема подключения с двумя дросселями

Ремонт своими руками

Электромагнитный дроссель можно изготовить и своими руками. Но делается это редко. Гораздо чаще умельцы самостоятельно восстанавливают ПРА, так как приобрести нужную модель не всегда удается (особенно трудно найти ее в «глубинке»).

С устройства снимается защитный чехол и две половинки сердечника (они имеют Г-образную форму). Затем снимается обмотка. Если по каким-то причинам снятие витков провода затруднено, их можно срезать, используя ножовку по металлу.

Для новой обмотки можно использовать медный провод диаметром 0,64-0,8 мм. Тысячу витков наматывают без межслойной изоляции внавал.

На перемотку дросселя уходит не более двух часов.

Сравнение двух видов дросселей позволяет сделать вывод, что несомненное преимущество имеют ЭПРА. Они легче и меньше по габаритам. Такие характеристики облегчают создание миниатюрных осветительных приборов, потребность в которых неуклонно возрастает.

Источник: http://FineLighting.ru/texnologii-i-normy/sistemy/drosseli/vybiraem-podklyuchaem-lyuminescentnyx-lamp-pravilno.html

__________________________________________
Ссылка на основную публикацию