Работа прибора варистор: использование и принципы эксплуатации, маркировка и фото применения

Варистор: принцип работы, характеристики, назначение. Как работает варистор?

Работа прибора варистор: использование и принципы эксплуатации, маркировка и фото применения

Варистором называются полупроводниковые резисторы, которые способны уменьшать сопротивление в 10 раз от начальной величины с помощью увеличения напряжения. Например, если резистор имеет сопротивление 1000 МОм, то с применением данного элемента оно составит 1000 Ом. Таким образом, сопротивление уменьшается в том случае, когда увеличивается напряжение.

Как правило, они бывают металлооксидные или оксидноцинковые. Если посмотреть на вольт-амперные характеристики варистора, то можно отметить, что он имеет нелинейную симметричную форму, то есть может работать не только на постоянном, но и переменном напряжении. Такой элемент присоединяется параллельно нагрузке.

Как работает варистор?При повышении напряжения в сети ток проходит не через оборудование, а именно через варистор. Такое приспособление способно распределять энергию в виде тепла.

Его главные особенности — это многократное использование и быстрое время восстановления, то есть его сопротивление имеет первоначальный показатель при снятии напряжения.

Какой имеет варистор принцип работы? Деталь ничем не отличается от обычного резистора, то есть при нормальном функционировании электроники он имеет омическое сопротивление. Итак, рассмотрим, какой имеет варистор принцип работы.

Показатель такого сопротивления довольно высок, и может составить 100000 Ом. При включении напряжения оно может уменьшиться, как только возникнет необходимость в защите уровня. Сопротивление падает от 100000 Ом до 100.

Если значение упадет до низкого предела или будет равно нулю, то может возникнуть короткое замыкание. При этом предохранитель, который находится в электрической цепи перед варистором, выходит из строя.

После этого электрическая цепь замыкается, и напряжение полностью отключается.

Как говорилось ранее, при отсутствии напряжения варистор может полностью восстановиться и работать в прежнем режиме. Для его функционирования требуется заменить перегоревший предохранитель.

Далее электронное устройство будет правильно функционировать. Варистор присоединяется параллельно источнику питания. Рассмотрим, какой имеет варистор принцип работы, на примере обычного персонального компьютера.

Так как он имеет два вывода, то присоединение осуществляется параллельно фазы и нуля.

Как выглядит элемент?

Такое приспособление, как варистор, фото которого есть в нашей статье, напоминает обычный резистор, то есть имеет форму прямоугольника. Но все же имеет небольшое отличие.Посреди него проходит диагональ, конец которой изогнут.

Как маркируется варистор?

На сегодняшний день можно встретить разные обозначения этих приборов. Каждый производитель вправе устанавливать ее самостоятельно. Маркировки различаются, потому что технические характеристики варисторов отличаются друг от друга. Примерами могут служить такие показатели, как допустимое напряжение или необходимый уровень тока.

В настоящее время каждый производитель устанавливает свою маркировку на эти типы приборов. Это объясняется тем, что производимые приборы имеют разные технические характеристики.

Например, предельно допустимое напряжение или необходимый для функционирования уровень тока. Наиболее популярная маркировка – CNR, к которой прикрепляется такое обозначение, как 07D390K.

Что же это значит? Итак, само обозначение CNR указывает на вид прибора. В этом случае варистор является металлооксидным.

Далее, 07 – это размер устройства в диаметре, то есть равный 7 мм. D – дисковое устройство, и 390 – максимально допустимый показатель напряжения.

Основные параметры варисторов

К таким параметрам относят:

  • норма напряжения;
  • максимально допустимый показатель переменного и постоянного тока;
  • пиковое поглощение энергии;
  • возможные погрешности;
  • время работы элемента.

Диагностика

Чтобы проверить данное электронное устройство, используют специальное оборудование, которое называется тестером.

Итак, для проведения испытания понадобится варистор, принцип работы которого заключается в изменении параметров сопротивления, и тестирующее устройство. Перед его началом необходимо включить устройство и переключить в режим сопротивления.

Только тогда аппарат будет отвечать всем необходимым техническим требованиям, и величина сопротивления будет огромной.

Перед началом проведения испытаний необходимо проверить техническое состояние прибора. В первую очередь следует посмотреть на его внешний вид. На приборе не должно быть трещин, а также признаков того, что он сгорел. Не стоит относиться к осмотру аппарата халатно, так как любая небольшая поломка может привести к возникновению неприятных обстоятельств.

Варисторы: применение

Такие приборы играют важную роль в жизни человека.Из всего вышеперечисленного можно сказать, что варистор, принцип работы которого заключается в защите электроники от высокого напряжения в сети, помогает предотвратить поломку многих электрических приборов и сохранить проводку в целостности. Основным местом являются электрические цепи в различном оборудовании.

Например, они встречаются в пусковых элементах освещения, которые еще называются балластами. Также устанавливаются в электрических схемах специальные варисторы, применение которых необходимо для стабилизации напряжения и тока.Такие устройства используются еще в линиях электропередач.

Но там они называются разрядниками, рабочее напряжение которых составляет более двадцати тысяч вольт.

Варисторы могут работать в большом диапазоне напряжения, который начинается с совсем маленького значения в 3 В, и заканчивается 200 В. Что касается силы тока элемента, то здесь диапазон составляет от 0,1 до 1 А. Такие показатели тока действительны только для низковольтного технического оборудования.

Положительные стороны варисторов

Данный вид аппаратов имеет множество положительных качеств, если сравнивать его с другими приборами, например, с разрядником. К таким важным преимуществам можно отнести:

  • высокая скорость работы элемента;
  • возможность отслеживания перепадов тока безинерционным методом;
  • возможность использования на уровне напряжения в пределах от 12 до 1800 В;
  • длительный срок эксплуатации;
  • относительно малая стоимость за счет простоты конструкции.

Отрицательные стороны

Вместе с таким большим количеством преимуществ перед другими приборами, есть также и существенные недостатки, среди которых можно выделить такие.

  1. Варисторы имеют огромной размер собственной емкости, что сказывается на работе электрической сети. Такой показатель может находиться в пределах от 80 до 3000 пФ. Он зависит от многих моментов: конструкция и вид варистора, а также максимальное значение уровня напряжения. Стоит отметить, что в некоторых случаях такой существенный недостаток может превратиться в главное достоинство. Но такое возможно довольно редко, например, если использовать варистор в фильтрах. В такой ситуации большая емкость будет служить в качестве ограничителя напряжения в сети.
  2. По сравнению с разрядниками, варисторы не способны рассеивать мощность при максимальных показателях напряжения.

Чтобы увеличить показатель рассеянности необходимо увеличивать размер элементов, чем и занимаются многие производители.

Рекомендации к установке

Если появилась необходимость во включении варистора в электрическую сеть, необходимо помнить о таких важных моментах:

  • Всегда следует иметь в виду, что данный прибор не вечен, и наступят такие условия, которые приведут к его взрыву. Чтобы этого не произошло, необходимо использовать специальные защитные экраны, в которые можно поместить весь варистор.
  • Следует отметить, что кремневые технические приспособления существенно уступают по своим характеристикам оксидным аналогам. Поэтому лучше всего использовать именно этот вид варистора.

Заключение

Варистор играет важную роль в функционировании многих электрических цепей. Как говорилось ранее, такой вид полупроводниковых резисторов служит для уменьшения показателей сопротивления при увеличении напряжения или тока.

Благодаря такой возможности их устанавливают во многие электрические приборы. При скачках напряжения варистор, назначение которого направлено на изменение сопротивления, не дает ломаться приборам. Также он предотвращает перегоранию проводки.

Таким образом, данные элементы обеспечивают надежную защиту при скачках электрического напряжения в сети.

Источник: http://utyugok.ru/article/229991/varistor-printsip-rabotyi-harakteristiki-naznachenie-kak-rabotaet-varistor

Варисторы — принцип работы, типы и применение

 Что такое варистор и для чего он применяется, рассмотрен принцип действия варистров, их вольт-амперная характеристика, приведены основные параметры варисторов отечественного производства, а также параметры для дисковых варисторов серии TVR. Как выглядит из себя варистор который применяется в бытовой радиоаппаратуре, а также внешний вид мощных варистров.

Принцип работы варистора

Варисторы, Varistors (название образовано от двух слов Variable Resistors — изменяющиеся сопротивления) — это полупроводниковые (металлооксидные или оксидноцинковые) резисторы, обладающие свойством резко уменьшать свое сопротивление с 1000 МОм до десятков Ом при увеличении на них напряжения выше пороговой величины.

В этом случае сопротивление становится тем меньше, чем больше действует напряжение. Типичная вольт-амперная характеристика варистора имеет резко выраженную нелинейную симметричную форму (рисунок 1), то есть он может работать и на переменном напряжении.

Рис. 1. Вольт-амперная характеристика варистора.

Варисторы подсоединяют параллельно нагрузке, и при броске входного напряжения основной ток помехи протекает через них, а не через аппаратуру.

Таким образом, варисторы рассеивают энергию помехи в виде тепла. Так же, как и газоразрядник, варистор является элементом многократного действия, но значительно быстрее восстанавливает свое высокое сопротивление после снятия напряжения.

Достоинством варисторов, по сравнению с газоразрядниками, являются:

  • большее быстродействие;
  • безынерционное отслеживание перепадов напряжений;
  • выпускаются на более широкий диапазон рабочих напряжений (от 12 до 1800 В); о длительный срок эксплуатации;
  • имеют более низкую стоимость.
Читайте также:  Установка кондиционера своими руками: видео, особенности установки и монтажа в квартире

Варисторы широко применяются в промышленном оборудовании и приборах бытового назначения:

  • для защиты полупроводниковых приборов: тиристоров, симисторов, транзисторов, диодов, стабилитронов;
  • для электростатической защиты входов радиоаппаратуры;
  • для защиты от электромагнитных всплесков в мощных индуктивных элементах;
  • как элемент искрогашения в электромоторах и переключателях.

Виды варисторов

Типовое значение времени срабатывания варисторов при воздействии перенапряжения составляет не более 25 не, но для защиты некоторых видов оборудования его может оказаться недостаточно (для электростатической защиты необходимо не более 1 не).

Поэтому совершенствование технологии изготовления варисторов во всем мире направлено на повышение их быстродействия.

Так, например, фирме “S+M Epcos”, благодаря применению при изготовлении варисторов многослойной структуры SIOV-CN и их SMD-исполнения (безвыводная конструкция для поверхностного монтажа), удается добиться времени срабатывания менее 0,5 не (при расположении таких элементов на печатной плате для получения указанного быстродействия уже необходимо минимизировать индуктивности внешних соединительных проводников).

В дисковой конструкции варисторов за счет индуктивности выводов время срабатывания увеличивается до нескольких наносекунд.

Малое время срабатывания, высокая надежность, отличные пиковые электрические характеристики в широком диапазоне рабочей температуры при малых размерах ставят многослойные варисторы на первое место при выборе элементов защиты от статических зарядов.

Рис. 2. Внешний вид варисторов.

Рис. 3. Внешний вид мощных варисторов.

Например, в области производства сотовых телефонов многослойные варисторы можно считать уже стандартом в защите от статического электричества.

CN-варисторы могут надежно защищать от статических разрядов: клавиатуры, разъемы для подключения факса и модема, соединители зарядных устройств, входы интегральных аналоговых микросхем, выводы микропроцессоров.

Характеристики варисторов

Основными параметрами, которые используют при описании характеристик варисторов, являются:

  • Un — классификационное напряжение, обычно измеряемое при токе 1 мА, — это условный параметр, который указывается при маркировке элементов;
  • Um — максимально допустимое действующее переменное напряжение (среднеквадратичное);
  • Um= — максимально допустимое постоянное напряжение;
  • Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;
  • W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса. 
  • Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;
  • Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда вари-стор пропускает через себя большой ток, она падает до нуля.

От величины W зависит, как долго может действовать перегрузка (с максимальной мощностью Рт) без опасности повредить варистор, т. е.:

Для применения рабочее напряжение у варисторов выбирается исходя из допустимой энергии рассеяния и максимально допустимой амплитуды напряжения. Напряжение ограничения примерно равно квалификационному напряжению (Un) варистора.

Для ориентировочных расчетов рекомендуется, чтобы на переменном напряжении оно не превышало Uвх<\p>

Источник: http://radiodvor.com/news/fashion/varistory-princip-raboty-tipy-i-primenen.html

Варистор – что это такое, каков его принцип работы и схема включения?

instrument.guru > Электроника > Варистор – что это такое, каков его принцип работы и схема включения?

Варистор – это радиоэлектронный элемент, применяемый в цепях защиты электронных приборов от перенапряжений в сети.

Он представляет собой полупроводниковый резистор, имеющий нелинейную вольт-амперную характеристику. Сопротивление варистора изменяется от сотен Мом до десятков Ом в зависимости от приложенного напряжения.

Полупроводниковый резистор включается параллельно с предохранителем в цепи питания электронных устройств для демпфирования воздействия всплесков напряжения в сети.

Обозначение варистора на схеме – это обозначение резистора, перечёркнутого ломаной линией, подразумевающей нелинейность.

Принцип работы варистора

В нормальном режиме работы полупроводниковый резистор имеет высокое сопротивление, но когда напряжение превышает номинальное, его сопротивление сильно падает, а ток возрастает из-за лавинного эффекта. Напряжение на нём остаётся на уровне чуть выше номинального, иными словами в этом режиме работает как стабилитрон.

Подключенный на входе цепей питания, полупроводниковый резистор вносит в цепь собственную ёмкость, которую нужно учитывать при проектировании, чтобы обеспечить устойчивую работу устройства. Значение ёмкости имеет прямо пропорциональную зависимость от площади и обратно пропорциональную от толщины.

Чтобы правильно подобрать элемент защиты от перегрузок цепей источника питания электронного устройства, необходимо знать входное сопротивление источника и мощность импульсов, возникающих при переходных процессах.

Длительность и период повторений выбросов напряжения определяет максимальное значение тока, которое может пропускать варистор. Если максимальное (пиковое) значение мало, то он перегреется и выйдет из строя.

Значит, для работы без отказов элемент должен эффективно рассеивать энергию импульса переходного процесса с возвратом в исходное состояние.

Классификация, достоинства и недостатки

По рабочему напряжению полупроводниковые резисторы делятся на :

  • на высоковольтные ( рабочее напряжение до 20кВ);
  • низковольтные ( от 3 до 200В).

Высоковольтные применяются для защиты от перенапряжений в электросетях и электроустановках, а низковольтные – для защиты цепей питания радиоэлектронных приборов и устройств.

К положительным характеристикам полупроводникового резистора можно отнести:

  • способность работать на высоких частотах с большими нагрузками;
  • невысокая стоимость;
  • широкая применяемость;
  • надёжность;
  • простота применения.

Его недостатки проявляются в создании повышенного низкочастотного шума и в зависимость их вольт-амперной характеристики от температуры.

Технология изготовления

Варисторы изготавливают из порошков оксида цинка и карбида кремния на основе технологии, называемой «керамической». Технология заключается в прессовании элементов из порошков с обжигом их в высокотемпературной печи и покрытием корпуса электроизоляционным и влагостойким лаком.

Стандартная технология позволяет изготавливать полупроводниковые резисторы по индивидуальному заказу.

Параметры

Полупроводниковые резисторы характеризуются следующими параметрами:

  • номинальное напряжение классификационное (В) – напряжение при котором варистор пропускает ток в 1 mA;
  • напряжение максимально допустимое переменное (В)– это величина переменного напряжения, при котором ток варистора резко возрастает и он выполняет свои защитные функции;
  • напряжение максимально допустимое постоянное (В)– величина постоянного напряжения, при котором, как и в предыдущем случае, варистор переходит в режим защиты;
  • напряжение ограничения максимальное (В)– величина максимального напряжения, которое варистор выдерживает без повреждения; при превышении его он выходит из строя: растрескивается, выгорает или разрушается на куски;
  • Максимальная поглощаемая энергия (Дж) – это максимальная энергия импульса, которую рассеивает варистор в виде тепла без разрушения;
  • Время срабатывания (нс) – время, в течение которого он переходит из высокоомного состояния в низкоомное; у большинства варисторов оно составляет десятки наносекунд;
  • Допустимое отклонение – значение отклонения от напряжения квалификационного (%). Выражается в виде стандартизованного ряда ±5%, ±10%, ±20% и т. д.

Маркировка варисторов, обозначения

На корпусе каждого элемента имеется маркировка из букв и цифр, расшифровка которых поведает о характеристиках электронного элемента.

Первые буквы в маркировке означают вид элемента: СН – сопротивление нелинейное.

Цифра, следующая далее, говорит о материале, из которого изготовлен элемент, к примеру, 1 означает, что материал изготовления – карбид кремния.

Цифра в маркировке между двух дефисов – тип конструкции: 1 – стержневая, 2- дисковая.

Последующие цифры в ряду маркировки означают номинальное напряжение и допустимое отклонение в процентах.

Исправен ли варистор, как проверить?

Исправность элемента можно проверить несколькими способами:

  • Визуальным осмотром с целью определения подгораний, растрескиваний корпуса, потемнения корпуса, которые говорят о возможной неисправности элемента;
  • Измерением сопротивления с помощью омметра или мультиметра.

Заключение

В данной статье мы узнали, что такое варистор – это резистор из полупроводникового материала с нелинейной вольт-амперной характеристикой, который надёжным и простым способом защиты электронных приборов от импульсных перегрузок.

В случае резкого превышения номинального напряжения питания, полупроводниковый резистор резко понижая своё сопротивление, шунтирует цепь питания и берёт на себя нагрузку по резко возросшему току.

Источник: https://instrument.guru/elektronika/varistor-chto-eto-takoe-printsip-raboty.html

Применение варисторов

Применение варисторов

Частой причиной выхода из строя оборудования, например, блоков питания, является наличие в сети импульсов перенапряжения. Они могут быть вызваны различными электромагнитными помехами, связанными с грозовыми разрядами, либо с коммутацией и разрядами индуктивных и емкостных элементов цепи, а также соответствующими переходными процессами.

На практике, для защиты элементов цепи от импульсных перенапряжений используют RC-цепочки, LC-фильтры, а также специальные устройства, называемые разрядниками.

Разрядники обычно подключаются параллельно защищаемому оборудованию и представляют собой нелинейные резисторы с высоким сопротивлением в обычном состоянии (рабочее открытое состояние), и резко уменьшенным после приложения импульса напряжения.

К числу разрядников обычно относят:

-газонаполненные (искровые) разрядники;-кремниевые ограничительные диоды, стабилитроны;

-варисторы.

Газонаполненные разрядники характеризуются наиболее широким диапазоном напряжений срабатывания, однако, к их недостаткам следует отнести:

1) недопустимо большое падение напряжения на разряднике, которое может возникать перед его срабатыванием и приводить к повреждению защищаемого объекта.

2) в некоторых случаях, из-за малого напряжения горения газоразрядника в цепях постоянного тока, он не гасится. Поэтому возможен тепловой перегрев и разрушение разрядника за счет остаточного тока.

Читайте также:  Тёплый пол: особенности, как делать монтаж водяной и электрической системы

Кремниевые ограничительные диоды обычно имеют свойство однополярности. Их вольтамперная характеристика (ВАХ), хотя и обладает обычно большой крутизной, но не является симметричной относительно напряжения.

Конечно, допускается возможность встречного включения двух диодов (в комбинации с резисторами для ограничения тока через диод, и конденсатором для фильтрации), однако, альтернативный вариант с одним варистором является более дешевым (ввиду низкой стоимости варисторов) и более простым конструктивно, с учетом малых размеров варисторов, соответственно экономится необходимая площадь монтажа на плате, затраты по монтажу и снижается общая вероятность сбоев в данном узле схемы.

С другой стороны малый объем p — n перехода ограничительного диода значительно снижает величину допустимого импульсного тока. Варисторы за счет рассеивания тока в объеме кристалла допускают значительно большие токи, измеряемые в А и кА.

Ввиду указанных недостатков остальных разрядников, часто наиболее целесообразным решением по защите цепей от импульсов перенапряжения является использование варисторов.

Варистор — резистивный элемент с резко выраженной нелинейной ВАХ и поликристаллической структурой из наиболее популярного для этих целей оксида цинка (ZnO). Симметричность ВАХ варистора является одним из его преимуществ перед ограничительными диодами.

По конструкции корпуса варисторы ПО «Монолит» можно разделить на две основные группы:

1) безвыводные чипы для поверхностного монтажа, размеры от 0805 (2 х 1.25 мм) до 4032 (10 х 8 мм);
2) выводные (окукленный корпус с выводами).

Важное свойство варистора, обеспечивающее безопасность защищаемых объектов от импульсных перенапряжений (помех) и быстрых переходных процессов — его быстродействие (безинерционность). Время срабатывания варисторов существенно меньше постоянной времени термисторов (которое измеряется в единицах секунд).

Высокое быстродействие варистора производитель может реализовать, только обеспечив достаточно малую индуктивность выводов изделия. Наименьшей индуктивностью обладают безвыводные варисторы. Время срабатывания варисторов 5 — 25 нс.

Являясь разрядником, варистор, в простейшем случае устанавливается параллельно защищаемой схеме, последовательно с внутренним сопротивлением источника помех (имеется в виду сопротивление линии передачи данных с учетом омического импеданса кабеля). При отсутствии перенапряжения ток, проходящий через варистор, очень мал.

Принцип защиты схемы варистором (рисунок 1) состоит в резком уменьшении его внутреннего сопротивления до долей Ом при возникновении импульса напряжения, и соответствующее шунтирование защищаемого объекта. Результатом является резкое увеличение тока, протекающего через варистор.

Основными параметрами, которых достаточно, чтобы, в основном, характеризовать варистор, можно считать:

1) номинальное (рабочее) напряжение (постоянное Udc или переменное Urms);
2) так называемые ток перегрузки (импульсный) Imax и энергия импульса Wmax;
3) рассеиваемая мощность Pmax.

Что определяют данные параметры?

1. Номинальное напряжение (Urms или Udc) максимальное напряжение, которое должно быть приложено к варистору (в постоянном рабочем режиме). Оно может быть превышено только (кратковременным) импульсом перенапряжения.

2. Величина тока перегрузки и Imax 8/20 характеризует амплитуду, длительность и число импульсов стандартной формы, которые могут быть приложены к варистору в течение всего его срока эксплуатации.Wmax — энергия, поглощаемая (рассеиваемая) варистором при протекании через него импульса тока 10/1000.

(Символы «8/20» и «10/1000» определяют параметры отдельных импульсов).

3. Параметр Pmax необходимо учитывать, когда варистор не успевает рассеивать тепло в промежутках между приложенными импульсами тока и значительно нагревается. Pmax в основном определяется размерами варистора и конструкцией выводов.

В остальных случаях для выбора варистора достаточно знать Udc или Urms.

В большинстве случаев, выбор конкретного варистора осуществляется по следующим параметрам цепи:

1) по номинальному (рабочему) напряжению цепи определяют Urms (Udc) (с учетом допуска сетевого напряжения, скажем + 10 % к номинальному);

2) уточняют необходимую энергию Wmax.

Некоторым недостатком варистора является его обычно высокая собственная емкость, ограничивающая возможность применения изделий на высоких частотах (из-за соответствующего шунтирования линии малым импедансом).

В линиях передачи данные варисторы используют тогда, когда вносимая ими емкость не оказывает существенного влияния на передаваемую информацию (обычно в каталогах значение емкости Сх указано для каждого варистора — для частоты 1 кГц оно составляет от сотен пФ до нескольких тысяч пФ).

Емкостной фактор существенен только в отсутствии тока, проходящего через варистор, т.к. с увеличением приложенного напряжения емкость варистора падает (по нелинейному закону). При максимально допустимом падении напряжения на варисторе, его емкость близка к нулю.

В коаксиальных линиях и высокоскоростных линиях передачи данных (интерфейсах), где требуется малая емкость ограничителя, могут быть использованы многослойные варисторы.

Наоборот, варисторы с повышенной емкостью (0.47 — 4.7 мкФ) могут быть использованы для шумопоглощения. Эта серия также применяется в автомобильной промышленности.

Кроме перечисленных функций варисторы могут применяться, например, в фильтрах — для замены конденсаторов и преобразования частоты сигнала (преимущество перед конденсатором — защита от импульсных воздействий; сокращение общего количества необходимых элементов фильтра).

Варисторы также могут использоваться для стабилизации и преобразования напряжения (в отличие от газоразрядников и ограничительных диодов, рассчитанных только на защиту оборудования от перенапряжения).

Таким образом, применение варисторов в составе защитного оборудования по перенапряжению позволяет:

— обеспечить необходимую защищенность от электромагнитных помех (ЭМП);- эффективно и просто реализовать функции защиты рисунки 2, 3;- сократить габаритные размеры устройства в целом — обеспечить малый пусковой ток и потери мощности;

— в результате обеспечить долгий гарантийный срок эксплуатации оборудования с исключением сбоев в работе.

Схема защиты от импульсных воздействий напряжения с диодами, в комбинации с резисторами для ограничения тока и конденсаторов для фильтрации, получила наибольшее распространение в последнее время.

Дополнительно в конструкции могут быть использованы разрядники для отвода той части энергии импульсного напряжения, которая не может быть рассеяна диодами. Очень часто эти комбинации могут быть заменены одним многослойным варистором.

Применение варистора позволяет уменьшить затраты по установке (1 вместо 4 компонентов, рисунок 2) и площади печатной платы (рисунок 3), приводящей к сокращению до 30 % стоимости.

По сравнению с диодом варистор размера 3.2 х 2.5 мм занимает только ~ 25 % площади на печатной плате.

Оксидноцинковые варисторы являются в настоящее время практически единственным быстродействующим средством защиты сложных и дорогостоящих полупроводниковых систем различного назначения, таких как:— бытовая электроника (телевизоры, микроволновые печи, бытовая радиоаппаратура и др.);- устройства промышленной электроники (электродвигатели, схемы управления, релейные схемы, схемы защиты);- аппаратура средств связи;- устройства обработки данных;- оборудование передачи электроэнергии (газоразрядники);

— индикаторные средства (автомобильная электроника, железнодорожный транспорт) и др. области применения.

Источник: http://shemu.ru/lessons/293-varistoru

Варисторы – принцип работы, типы и применение

Варисторы – принцип работы, типы и применение

   Varistors (название образовано от двух слов Variable Resistors — изменяющиеся сопротивления) — это полупроводниковые (металлооксидные или оксидноцинковые) резисторы, обладающие свойством резко уменьшать свое сопротивление с 1000 МОм до десятков Ом при увеличении на них напряжения выше пороговой величины. В этом случае сопротивление становится тем меньше, чем больше действует напряжение. Типичная вольт-амперная характеристика варистора имеет резко выраженную нелинейную симметричную форму (рис. 1.4), т. е. он может работать и на переменном напряжении.

   Рис. 1.4. Вольт-амперная характеристика варистора

   Варисторы подсоединяют параллельно нагрузке, и при броске входного напряжения основной ток помехи протекает через них, а не через аппаратуру.

   Таким образом, варисторы рассеивают энергию помехи в виде тепла. Так же, как и газоразрядник, варистор является элементом многократного действия, но значительно быстрее восстанавливает свое высокое сопротивление после снятия напряжения.

   Достоинством варисторов, по сравнению с газрядниками, являются:

   + большее быстродействие;

   + безынерционное отслеживание перепадов напряжений;

   + выпускаются на более широкий диапазон рабочих напряжений (от 12 до 1800 В); о длительный срок эксплуатации;

   +    имеют более низкую стоимость.

   Они широко применяются в промышленном оборудовании и приборах бытового назначения:

   а) для защиты полупроводниковых приборов: тиристоров, симисторов, транзисторов, диодов, стабилитронов;

   б) для электростатической защиты входов радиоаппаратуры;

   в) для защиты от электромагнитных всплесков в мощных индуктивных элементах;

   г) как элемент искрогашения в электромоторах и переключателях.

   Типовое значение времени срабатывания варисторов при воздействии перенапряжения составляет не более 25 не, но для защиты некоторых видов оборудования его может оказаться недостаточно (для электростатической защиты необходимо не более 1 не).

Поэтому совершенствование технологии изготовления варисторов во всем мире направлено на повышение их быстродействия.

Так, например, фирме “S+M Epcos”, благодаря применению при изготовлении варисторов многослойной структуры SIOV-CN и их SMD-исполнения (безвыводная конструкция для поверхностного монтажа), удается добиться времени срабатывания менее 0,5 не (при расположении таких элементов на печатной плате для получения указанного быстродействия уже необходимо минимизировать индуктивности внешних соединительных проводников). В дисковой конструкции варисторов за счет индуктивности выводов время срабатывания увеличивается до нескольких наносекунд.

   Малое время срабатывания, высокая надежность, отличные пиковые электрические характеристики в широком диапазоне рабочей температуры при малых размерах ставят многослойные варисторы на первое место при выборе элементов защиты от статических зарядов.

Читайте также:  Почему не отключается холодильник: причины неполадок, из-за которых он работает постоянно

   Рис. 1.5. Внешний вид варисторов

   Например, в области производства сотовых телефонов многослойные варисторы можно считать уже стандартом в защите от статического электричества. CN-варисторы могут надежно защищать от статических разрядов: клавиатуры, разъемы для подключения факса и модема, соединители зарядных устройств, входы интегральных аналоговых микросхем, выводы микропроцессоров.

   Основными параметрами, которые используют при описании характеристик варисторов, являются:

   Un — классификационное напряжение, обычно измеряемое при токе 1 мА, — это условный параметр, который указывается при маркировке элементов;

   Um – максимально допустимое действующее переменное

   напряжение (среднеквадратичное);

   Um= — максимально допустимое постоянное напряжение;

   Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

   W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса. От этой величины зависит, как долго может действовать перегрузка (с максимальной мощностью Рт) без опасности повредить варистор, т. е.:

   Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;

   Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда вари-стор пропускает через себя большой ток, она падает до нуля.

   Для применения рабочее напряжение у варисторов выбирается исходя из допустимой энергии рассеяния и максимально допустимой амплитуды напряжения. Напряжение ограничения примерно равно квалификационному напряжению (Un) варистора. Для ориентировочных расчетов рекомендуется, чтобы на переменном напряжении оно не превышало Uвх<\p>

Источник: http://nauchebe.net/2012/09/varistory-princip-raboty-tipy-i-primenenie/

Замена и проверка варистора + видео

Если при ремонте кондиционера вы обнаружили на плате сгоревший предохранитель не спешите его тут же менять, вначале выясните причину по которой он сгорел.

Скорее всего это произошло из-за скачков напряжения в сети.

При измерении в сети напряжение питания оно постоянно колеблется,причём не всегда в пределах безопасных для кондиционеров.

Плюс к этому в сети всегда присутствуют короткие импульсы напряжением в несколько киловольт. Происходит это из-за постоянного отключения и включения индуктивной и ёмкостной нагрузки (электродвигатели,трансформаторы и т. д.), а также из-за атмосферного электричества.

Кондиционеры, как и любую другую электронную технику защищают на этот случай варисторами. Точнее электронную начинку кондиционера-плату управления.

Стандартная схема подключения варистора

параллельно защищаемой нагрузке подключают варистор VA1, а перед ним ставят предохранитель F1:

Принцип действия варистора

По сути варистор представляет собой нелинейный полупроводниковый резистор, проводимость которого зависит от приложенного к нему напряжения.

При нормальном напряжении варистор пропускает через себя пренебрежительно малый ток, а при определённом пороговом напряжении он открывается и пропускает через себя весь ток.

Таким образом он фильтрует короткие импульсы, если же импульс будет более длинным, и ток идущий через варистор превысит номинальный ток срабатывания предохранителя, то он попросту сгорит, обесточив и защитив нагрузку.

Маркировка варисторов

Существует огромное количество варисторов разных производителей, с разным пороговым напряжение срабатывания и рассчитанные на разный ток. Узнать какой стоял варистор можно по его маркировке.Например маркировка варисторов CNR:

CNR-07D390K, где:

  • CNR-серия, полное название CeNtRa металлоксидные варисторы
  • 07- диаметр 7мм
  • D — дисковый
  • 390 — напряжение срабатывания, рассчитываются умножением первых двух цифр на 10 в степени равной третьей цифре, то есть 39 умножаем на 10 в нулевой степени получатся 39 В, 271-270 В и т. д.
  • K — допуск 10 %, то есть разброс напряжения может колебаться от номинального на 10 % в любую сторону.

Как же найти на плате варистор?

По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.

На фото варистор указан красной стрелкой.

Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали.

Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.

VA1- это варистор, а синяя деталь рядом это конденсатор-С70.

Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.

После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый.Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание — на строящемся объекте, на крыше, например.Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.

Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.

Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF — плюмбум фри).

В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.

Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.

Ещё обратите внимание, что большинство плат — двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы.

После замены варистора остаётся только поставить новый предохранитель и установить плату на место.

Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0.5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.

Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:

Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.

Источник: https://MasterXoloda.ru/1/zamena-varistora-2

Варисторы 07К…20К

Варистор серии 07K, 10K, 14K, 20K – оксидно-цинковый защитный элемент, обладающий способностью мгновенного изменения собственного сопротивления под воздействием подаваемого напряжения.

Характерные резко выраженные нелинейные и симметричные вольтамперные характеристики предоставляют возможность эксплуатации варисторов в цепях постоянного, переменного и импульсного тока.

Принцип работы варистора заключается в его способности в считанные наносекунды (до 25 нс) понижать собственное сопротивление до отметки в несколько Ом при воздействии напряжения, превышающего номинальное значение – напряжения срабатывания, ток срабатывания при этом может достигать 100А.

В обычном состоянии сопротивление варистора достигает нескольких сотен МОм, а поскольку подключают варисторы параллельно цепи, то ток через него не проходит и он выступает в роли диэлектрика.

Импульсный скачок приводит варистор в действие, понижая его сопротивление – происходит короткое замыкание и перегорает плавкий предохранитель, который должен устанавливаться в обязательном порядке перед варистором, и цепь размыкается.

В момент срабатывания происходит шунтирование излишней нагрузки, поглощаемая энергия (до 282 Дж при импульсе тока 2,5 мс) рассеивается в виде теплового излучения. Габаритные размеры варистора при этом играют значительную роль – общая площадь поверхности варистора имеет пропорциональное влияние на возможность гашения импульса напряжения без разрушения самого устройства.

Варисторы серии 07K, 10K, 14K, 20K имеют форму диска (дисковые варисторы) различной толщины с однонаправленными проволочными выводами радиального типа. Изготавливаются представленные варисторы методом прессования порошкообразного оксида цинка (ZnO).

На корпусе варисторов нанесена маркировка с указанием номинального классификационного напряжения и соответствующего допуска по напряжению (±10%). На образцах варисторов импортного производства при маркировке допуска используют символьное обозначение, например, буква K обозначает допуск ±10%, буква M – допуск ±20%.

Устанавливаются варисторы параллельно защищаемому устройству с помощью пайки выводов. Для достижения максимального уровня защиты рекомендуется использование двух одинаковых варисторов, подключенных параллельно друг другу, и дополнительного плавкого предохранителя, устанавливаемого последовательно перед варисторами.

Применяются предоставленные варисторы 07K, 10K, 14K, 20K для защиты элементов от перенапряжения в источниках и системах электропитания, бытовой и военной технике, телекоммуникационном и измерительном оборудовании.

Подробные характеристики, расшифровка маркировки, габаритные размеры, общее устройство варисторов 07K, 10K, 14K, 20K указаны ниже. Наша компания гарантирует качество и работу варисторов в течение 2 лет с момента их приобретения; предоставляются сертификаты качества.

Окончательная цена на оксидно-цинковые варисторы 07K, 10K, 14K, 20K зависит от количества, сроков поставки и формы оплаты.

Источник: http://asenergi.com/catalog/ustrojstva-zaschity/varistory-07k-10k-14k-20k.html

__________________________________________
Ссылка на основную публикацию